AOI机器视觉行业先行者

机器视觉缺陷检测的实现步骤是怎样的——康耐德智能

发布时间:2023-08-17浏览量:992作者:康耐德

  微信截图_20230816152807.png

        机器视觉缺陷检测的实现方法主要包括以下几个步骤:

  1. 图像获取:通过摄像机或其他图像采集设备获取产品的图像,也可以采集连续的图像序列。

  2. 图像预处理:对采集到的图像进行预处理,包括去噪、灰度化和平滑滤波等,以增强图像的对比度和细节。

  3. 特征提取:从预处理后的图像中提取出与缺陷相关的特征,如边缘、纹理和色彩等,这可以通过图像处理算法或特征描述子等方法实现。

  4. 缺陷检测与分类:利用机器学习和模式识别算法,将提取到的特征与已知的缺陷样本进行比对和分类,以实现缺陷的自动检测和分类。

  5. 缺陷定位与标注:对检测出的缺陷进行定位和标注,确定它们在图像中的位置和大小,这可以利用图像处理算法和边缘检测算法来实现。

  6. 缺陷判定与处理:根据预设的判定准则,对检测出的缺陷进行判定,确定是否为真实的缺陷,并采取相应的处理措施,如剔除、修复等。

  7.数据分析与统计:对检测结果进行统计和分析,得出缺陷的发生频率、位置分布等信息,以便于生产过程的改进和优化。


相关新闻


东莞市 南城区 黄金路 天安数码城C2栋507室

153-2293-3971

0769-28680919

csray@csray.com

  • 康耐德智能官方公众号官方公众号
    康耐德官方抖音号官方抖音号
  • Copyright  © 2022  东莞康耐德智能控制有限公司版权所有.机器视觉系统 粤ICP备2022020204号-1    联系我们 | 网站地图

    服务热线

    0769-28680919

    153-2293-3971

    官方公众号

    咨询微信号